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Studying functional brain connectivity plays an important role in understanding how

human brain functions and neuropsychological diseases such as autism, attention-deficit

hyperactivity disorder, and Alzheimer’s disease (AD). Functional magnetic resonance

imaging (fMRI) is one of the most popularly used tool to construct functional brain

connectivity. However, the presence of noises and outliers in fMRI blood oxygen

level dependent (BOLD) signals might lead to unreliable and unstable results in the

construction of connectivity matrix. In this paper, we propose a pipeline that enables

us to estimate robust and stable connectivity matrix, which increases the detectability of

group differences. In particular, a low-rank plus sparse (L + S) matrix decomposition

technique is adopted to decompose the original signals, where the low-rank matrix

L recovers the essential common features from regions of interest, and the sparse

matrix S catches the sparse individual variability and potential outliers. On the basis

of decomposed signals, we construct connectivity matrix using the proposed novel

concentration inequality-based sparse estimator. In order to facilitate the comparisons,

we also consider correlation, partial correlation, and graphical Lasso-based methods.

Hypothesis testing is then conducted to detect group differences. The proposed pipeline

is applied to rs-fMRI data in Alzheimer’s disease neuroimaging initiative to detect

AD-related biomarkers, and we show that the proposed pipeline provides accurate yet

more stable results than using the original BOLD signals.

Keywords: functional connectivity, rsfMRI = resting-state fMRI, low rank plus sparse decomposition (LRSD),

Alzheimer’s disease, ADNI

1. INTRODUCTION

Alzheimer’s disease (AD) is a chronic irreversible neurodegenerative disease. It is recognized as
a major public health problem, as it eventually affects every aspect of people’s life (MacDonald
et al., 2015). AD usually progresses very slowly and gradually worsen over a number of years,
becoming serious enough to interfere with people’s daily life (ADs, 2022). Scientists have found that
many diseases are associated with changes in brain connectivity, such as autism, attention-deficit
hyperactivity disorder (ADHD), and AD (Konrad and Eickhoff, 2010; Uddin et al., 2013; Dennis
and Thompson, 2014). Also, it was shown that individual’s functional brain connectivity can act
as an identifying fingerprint, which is unique, intrinsic, and reliable (Finn et al., 2015). Hence,
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studying functional brain connectivity is of great importance
to better understand the mechanisms of AD. Functional brain
connectivity is defined as the correlations betweenmeasurements
of neuronal activity in different brain areas (Friston, 2011). In
practice, it can be evaluated by functional neuroimaging (Van
Den Heuvel and Pol, 2010). Among different imaging modalities,
functional magnetic resonance imaging (fMRI) measures brain
activity by detecting changes associated with blood flow. The
primary form of fMRI uses the blood oxygen level dependent
(BOLD) contrast.

Due to scanner instabilities, acquisition, or issues in the
underlying biomedical experimental protocol, however, fMRI
BOLD signals might contain noise and outliers (Magnotti
and Billor, 2014). The presence of potential outliers in the
fMRI signals might lead to unreliable and unstable results in
the constructed connectivity matrices. In order to deal with
these challenges, we propose a framework that enables us to
provide robust and stable functional connectivity matrices, which
can further increase the detectability of group differences. In
particular, a low-rank plus sparse (L + S) matrix decomposition
technique is adapted to decompose the fMRI BOLD signals,
where the low-rank matrix L recovers the essential common
features between regions of interest (ROIs), and the sparse matrix
S catches the sparse individual variability and potential outliers
(Baete et al., 2018). There are some existing algorithms that
can solve this problem computationally, such as Accelerated
Proximal Gradient (APG), Augmented Direction Method
(ADM), Augmented Lagrange Multiplier (ALM), and so on.
Bouwmans and Zahzah (2014).

After the L + S matrix decomposition of original fMRI
signals, we use different methods to construct the functional
brain connectivity matrix. Various methods have been developed
in the literature, such as correlation, partial correlation, graphical
Lasso (GLasso), and so on. Since the fMRI data have high
dimensionality (especially at voxel level), the classical asymptotic
correlation estimation might perform poorly (Kashlak and Kong,
2017). In this paper, we propose to use the recently developed
novel non-asymptotic sparse matrix estimation based on
concentration inequality to construct the functional connectivity,
which is shown to have superior performance than other
methods. Once we build the functional connectivity matrices for
both the normal control group and disease group, we can conduct
the comparisons in order to identify the group differences, which
is essential for uncovering underlying neurological processes
associated with the corresponding disease. Since functional
connectivity is not directly observed, but has to be estimated
from noisy and complex imaging data. The comparison of
the functional connectivity at the group level highly depends
on many factors such as the estimation of the connectivity
matrices, the models used in the testing or comparison and
other practical issues related to the application. There have been
many work in the literature addressing these challenges, for
example, Kim et al. (2015) compared the use of correlation and
partial correlation; (Narayan and Allen, 2016) proposed the use
of mixed effects model to account for other covariate effects;
(Wozniak et al., 2013) presented an application comparing
global functional connectivity abnormalities in children with

fetal alcohol spectrum disorders. Detecting group differences for
specific diseases associated with functional connectivity is critical
for both research and clinical uses.

In this paper, we utilize resting-state fMRI data from
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(www.loni.ucla.edu/ADNI). The overall goal of the data analysis
is to identify functional connectivity biomarkers for AD, and
it mainly involves three steps. First, an L + S decomposition
is applied to the original fMRI signals to obtain the common
features in the data; second, the obtained low-rank signal is used
to construct the functional connectivity matrices, and different
methods such as Glasso and concentration inequality-based
estimation have been applied; lastly, hypothesis testing has been
conducted on the estimated functional connectivity matrices to
detect biomarkers related to AD. A flowchart of the data analysis
can be found in Figure 1.

The rest of the paper is organized as follows. In Section 2,
we introduce some technical details on low rank plus sparse
matrix decomposition. In Section 3, we present the proposed
novel concentration inequality-based sparse matrix estimation.
To facilitate the comparisons, we also introduce correlation,
partial correlation, and Graphical Lasso-based correlation matrix
estimation. In Section 4, we apply our method to the ADNI
data and illustrate the advantages of the proposed pipeline.
Conclusions and potential future work can be discussed
in Section 5.

2. LOW-RANK PLUS SPARSE MATRIX
DECOMPOSITIONS

L + S matrix decomposition is a special type of matrix
decomposition. It originates from robust principal component
analysis. Principal component analysis (PCA) tries to find a low
subspace that approximates the original data matrix by exploring
the eigen-structure of the correlation matrix. However, the
original PCA is sensitive to outliers. To improve the robustness
performance of PCA, researchers have developed various robust
PCA methods (Jolliffe and Cadima, 2016). Early attempts to
solve the RPCA problem have been conducted (Xu and Yuille,
1995; Croux and Haesbroeck, 2000; De la Torre and Black, 2001;
De La Torre and Black, 2003; Croux and Ruiz-Gazen, 2005).
However, they could not achieve polynomial time solutions with
high performance. A more recent version of RPCA becomes
increasingly popular (Kang et al., 2015).

The straightforward formulation for RPCA is to employ
l0-norm to solve

min
L,S

rank(L)+ λ||S||0, s.t. L+ S = M,

where M is a m × n matrix to be decomposed, L is a low-rank
matrix, S is a sparse matrix, ‖·‖0 is the l0-norm, and λ is a
non-negative tuning parameter. But this optimization problem
is not convex and NP-hard. Hence, it was suggested in Candès
et al. (2011) that we can approximate this problem by a convex
optimization problem, which is to minimize a combination of the
l1 norm of S and the nuclear norm of L (Wright et al., 2009). This
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FIGURE 1 | Flowchart for the proposed robust functional brain connectivity pipeline.

essentially is the L+Smatrix decomposition. Specifically, the L+S
matrix decomposition can be expressed as

min
L,S
||L||∗ + λ||S||1, s.t. L+ S = M, (1)

where ‖·‖∗ is the nuclear norm (sum of all singular values), ‖·‖1
is the l1-norm, and λ is a non-negative tuning parameter. Smaller
λ can enforce lower rank for L, but relax the sparsity for S.

There are some existing algorithms that can solve this
problem computationally, such as APG, ADM, ALM, and so on
Bouwmans and Zahzah (2014). In this paper, the algorithm ALM
was chosen because it is much faster, achieve higher precision
and being less storage/memory demanding comparing with other
popular choices such as APG (Lin et al., 2010). The R package for
ALM is available online.

In this paper, we apply the L + S matrix decomposition to
the fMRI BOLD signals. More specifically, let XN×T×J = {xitj}
be a 3-dimensional tensor where i represents the ith subject
(i = 1, ...,N), t represents the tth time course (t = 1, ...,T),
and j represents jth ROI (j = 1, ..., J). Then for each fixed ROI,
we conduct L + S matrix decomposition to each XN×T , and
we can obtain a low-rank new 3-dimensional matrix denoted as
LN×T×J = litj, which represents the common features among

the fMRI signals across the subjects. Then, we built functional
brain connectivity-based on each LT×J . Here, the original fMRI
signals XN×T is equivalent to the M matrix in equation (1), and
the resulting low-rank LT×J is equivalent to the Lmatrix.

3. CONCENTRATION INEQUALITY- BASED
ESTIMATION OF SPARSE COVARIANCE
MATRICES

Estimation of correlation and covariance matrices using high-
dimensional data is an important topic. Many estimators of
covariance matrix have been explored working under the
assumption of sparsity, which is desirable and applicable in
high dimensional settings since many variable pairings might be
considered uncorrelated. Shrinkage estimators, and thresholding
estimators, for example, are two classes for sparse estimators of
covariance matrix (Kashlak and Kong, 2017).

Let vectors X1, · · ·XT ∈ R
J be a sample with mean zero and

covariance matrix6, and S is the sample covariance of6 for each
subject. When the dimension J is large and 6 is sparse, S might
not be a good estimator. To construct a better estimator, a novel
approach is recently proposed making use of confidence sets
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constructed from concentration inequalities for non-asymptotic
covariance matrix estimation. Let 6̂sp be the sparse estimator for
6. This method chooses a 6̂sp such that it is close enough to
S while it lies far enough away to result in a sparse estimator.
This novel concentration inequality-based method supplies finite
sample guarantees and a much faster computing time compared
with costly optimization and cross-validation methods (Kashlak
and Kong, 2017).

The sparse estimation procedure aims at constructing a sparse
estimator 6̂sp for6 by constructing a non-asymptotic confidence
set first employing concentration inequalities for 6 based on S,
and searching this set in order to obtain the sparsest estimator.
The general form for the concentration inequalities is

P(d(6, S) ≥ Ed(6, S)+ r) ≤ e−ψ(r),

where ψ :R→ R is a monotonically increasing function, and
d(·) is some metric measuring the distance of two covariance
matrices. To construct a 1 − α confidence set, r = rα is chosen
such that exp(−ψ(rα)) = α. The smaller α is, the larger r is.
Our sparse estimator 6̂sp is expected to be close to 6 in the
sense of the above confidence set, and thus we focus on choosing
a 6̂sp such that d(6̂sp, S) ≤ rα . It begins with S and attempts
to threshold it as much as possible while still remaining in the
confidence set. We define a generalized thresholding operator
(Rothman et al., 2009) as sλ(· ) :R→ R such that

| sλ(z) |≤ z, sλ(z) = 0 for | z |≤ λ, and | sλ(z)− z |≤ λ,

which will apply to each single element of a matrix. In the past,
this estimator was applied to S for some λ chosen by cross-
validation. Instead of choosing the threshold λ, this approach
tries to choose a confidence level 1 − α and then seek for the
largest λ such that d(sλ(S), S) ≤ rα (Kashlak and Kong, 2017).

The algorithm for how to derive the sparse covariance matrix
estimation is shown in Algorithm 2 (Kashlak and Kong, 2017).

Algorithm 1 Concentration inequality-based estimation of
sparse covariance matrices

0. Set 6̂
sp
0 = (6̂diag)−1/2S(6̂diag)−1/2, λ = 0.5 and write

6̂
sp
λ = sλ(S). Define k = 1 as the number of the recursion’s

steps. Choose an α and compute rα .
1. Increase k← k+ 1, then update the threshold λ as below:
if d(6̂

sp
λ − S) ≤ rα , then

let λ← λ+ 2−k−1.
else

let λ← λ− 2−k−1.
end if

2. Repeat step 1 until k has gotten to the desired number of
iterations. Generally, as few as k = 10 will suffice.
3. The resulting sparse estimator is 6̂sp =

(6̂diag)1/2( ˆ6
sp
λ )(6̂

diag)1/2, where 6̂
sp
λ is our final sparse

estimator.

In our study, we employ the operator norm ‖ 6̂
sp
λ −

S ‖∞ as the distance metric d(·, ·). We choose reasonable false

positive rate α in order to get the reasonable sparsity for the
estimation of sparse covariance matrices. Once we obtain the
sparse covariance estimation, we can calculate the corresponding
correlation matrix as functional brain connectivity.

To facilitate the comparisons, we also employ correlation,
partial correlation, andGraphical Lassomethods for constructing
the connectivity matrices in our study. The Pearson’s correlation
between ROIs can be calculated based on a sample covariance
matrix. Specifically, let the matrix MJ×T be the ith subject’s
BOLD signals or low-rank matrix from decomposition, and each
columnM1, · · ·MT ∈ R

J . Then the sample covariancematrix can

be derived from S = spq = (T − 1)−1
∑T

i=1(Mi −M)(Mi −M)T ,

where M = T−1
∑T

i=1Mi. Then the full correlation between
the pth ROI and the qth ROI can be estimated as rpq =

spq/(sppsqq)
1
2 . When estimating partial correlations, a precision

matrix (or inverse covariance matrix) can be used (Kim et al.,
2015). Define the precision matrix 2pq = (θpq) = 6−1, where
6 is covariance matrix, then the partial correlation between

the pth ROI and the qth ROI is ρpq = −θpq/(θppθqq)
1
2 . If the

number of ROIs is relatively large, then our derived correlation
and partial correlationmatrices would be also relatively with high
dimensions. In practice, the fact is for the most of time we might
only be interested in selecting those connection pairs with larger
correlation coefficient values, which means they have stronger
connections compared to the others. In order to achieve this
goal, we apply thresholding values to both correlation and partial
correlation matrices (Cai and Liu, 2011; Fan et al., 2016). In
this way, we would get sparse correlation and partial correlation
matrices, which would help us focusing on the relatively more
important connections among those ROIs. Specifically, let R =
(rij)J×J be the sample correlation matrix, and let τ be the
reasonable pre-specified thresholding value. Then we enforce
the thresholding value to all the off diagonal elements of our
correlation matrix to get the corresponding sparse correlation
matrix Rsp, i.e., for the (i, j)th element of Rsp,

R
sp

(i,j)
=

{

1, i = j

rij1{| rij |> τ }, i 6= j
.

When τ = 1, it is an identity matrix, while when 0, it is
the original sample correlation matrix as we do not apply any
thresholding. The same thresholding method is also applied
to the estimated partial correlation matrices in the paper.
The Graphical Lasso problem is to maximize the l1-penalized
Gaussian log-likelihood

log(detΘ)− tr(SΘ)− ρ ‖Θ‖1 , (2)

over non-negative definite matrices Θ , where Θ = 6−1, tr
denotes the trace, S is the sample covariance matrix, ρ is a
non-negative tuning parameter, and ‖Θ‖1 is the l1 norm, the
sum of the absolute values of all the entries of 6−1 (Friedman
et al., 2008). When ρ is 0, then there is no penalty. When ρ is
sufficiently large, the estimate Θ̂ will be sparse due to the Lasso-
type penalty. In our study, the value ρ in (2) is chosen to get
the reasonable sparsity. The problem (2) is shown to be convex
(Banerjee et al., 2008).
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4. DETECTING GROUP DIFFERENCES

In our study, in order to detect group differences in functional
brain connectivity, we conduct two sample t statistical test to test
whether there is any difference for each single ROI connection
between the control group and disease group. Theoretically, if we
have J ROIs, then we have J(J − 1)/2 total connections. Suppose

a connectivity matrix C
(i)
J×J for ith subject can be denoted as

(c
(i)
p,q), where c

(i)
p,q represents the connectivity metric of the pth

ROI and qth ROI, p = 1, 2, · · · , J, and q = 1, 2, · · · , J (e.g.,
for correlation method, it is the correlation coefficient). Then for

each single ROI pair c
(i)
p,q of matrix C

(i)
J×J , we will have one group

of values: c
(1)
p,q, c

(2)
p,q, · · · c

(N1)
p,q from the control group and another

group of values: c
(1)
p,q, c

(2)
p,q, · · · c

(N2)
p,q from the disease group. Then

we can conduct two sample t-test for each single connection cp,q
of pth ROI and qth ROI to test whether there is any difference
for each single connection between the control group and disease
group. Afterward, we can generate a p-value matrix PJ×J =
(pp,q), where pp,q is the corresponding p-value indicating the
significance among brain connectivity cp,q between the control
group and disease group. Benjamin–Hochberg procedure is
applied to control the false discovery rate.

5. APPLICATION AND RESULTS

5.1. Data Description
The ADNI 1 is a global longitudinal study for AD through the
enrollment and follow-up of cohorts of individuals who have
mild cognitive impairment (MCI) and mild AD. The study is
designed for the detection at the earliest possible stage and
tracking the progression of AD with biomarkers to assess the
brain structure and the brain function. The participants enrolled
by ADNI are between 55 and 90 years of age, selected based on
the particular criteria, and recruited at the 57 ADNI acquisition
sites located in the United States and Canada. The five cohorts
in this study are normal control (NC), significant memory
concern (SMC), early mild cognitive impairment (EMCI), late
mild cognitive impairment (LMCI), and AD.

The dataset used in the study contains the NYU site (New
YorkUniversity Child Study Center) with 222 subjects. These 222
subjects include 5 disease categories depending on the severity of
AD: 0 (NC), 1 (SMC), 2 (EMCI), 3 (LMCI), and 4 (AD). Since
the final comparison of the proposed method involves only a
two sample hypothesis testing problem, the most two extreme
groups (normal control (n = 33) and AD (n = 24)) were used.
The fMRI data are preprocessed using Automated Anatomical
Labeling (AAL) template (Tzourio-Mazoyer et al., 2002). The
non-overlapping ROIs are then extracted for each subject. For
each subject, each time-series and ROI are computed through
averaging all the voxels’ time series within the ROIs (Sanz-Arigita

1Data used in preparation of this paper were obtained from the Alzheimer’s Disease

Neuroimaging Initiative (ADNI) database (adni.loni.ucla.edu). As such, the

investigators within the ADNI contributed to the design and implementation of

ADNI and/or provided data but did not participate in the analysis or writing of this

report. A complete listing of ADNI investigators can be found at: http://adni.loni.

usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

et al., 2010). Hence, each subject has BOLD signal data at 116
ROIs through 134 equally spaced time courses. All subjects had
1.5 Tesla and 3 Tesla scans by Philips scanners, having their eyes
open when receiving the scanning (SCA, 2017).

5.2. ADNI Data Results
We conduct L + S decomposition to the original BOLD
signals for each ROI. Specifically using cross-validation λ =
0.086 is chosen and the rank of the matrices LN×T is
reduced to around 30, approximately half as much as the
original rank 57 of the decomposed matrix XN×T . Then we
construct functional connectivity matrices using correlation,
partial correlation, Graphical Lasso, and the concentration
inequality-based estimation method based on both original
BOLD signals and low-rank matrices, respectively.

We first conduct correlation based on both the original
BOLD signals and low-rank matrices. We set the reasonable hard
threshold value 0.4 for correlation for both cases, in order to
derive the sparse connectivity selection results. The connectivity
selection results for correlation are shown in Figure 2. The
dark blue dots represent the non-zero elements of connectivity
matrices and white dots mean entries with zero values. From
Figure 2, we can see that the patterns of connectivity matrices
based on both the original BOLD signals and low-rank matrices
for either the control group subjects or the AD group subjects are
quite similar. Though we can also see that for both groups, the
correlation matrices based on low-rank matrices after employing
thresholding values are slightly sparser than the ones based on
original BOLD signals.

The partial correlation based on both original BOLD signals
and low-rank matrices are conducted. We set the reasonable
hard threshold value 0.8 for partial correlation based on original
data matrices, and 0.2 for partial correlation based on low-
rank matrices. The results’ graphs are omitted to conserve space.
Graphical Lasso is also conducted to obtain the estimated sparse
precision matrix automatically due to the method. In our study,
the value ρ in (2) is chosen as 0.1 in order to get the reasonable
sparsity, and also to achieve the comparable sparsity with other
methods for construction. The results’ graphs are again omitted
to conserve space.

We then build the functional connectivity matrices using
the recently proposed novel concentration inequality-based
estimation method of sparse covariance matrices. We choose
false positive rate α=0.35 in order to get the reasonable sparsity
for the estimation of sparse covariance matrices, and also
to achieve the comparable sparsity with other methods for
construction. The sparsity of connectivity matrices for the
concentration inequality-based estimation method is around
64%. Our sparse estimators 6̂sp results using concentration
inequality-based method for both original BOLD signals and
low-rank matrices are shown in Figure 3.

The comparison of same panels in Figures 2A, 3A shows
that the patterns for the significant pairs are similar based
on thresholding and sparse covariance estimation method
for both control and AD group subjects. This indicates that
the recently proposed novel concentration inequality-based
estimation method performs well in terms of the estimation
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FIGURE 2 | Connectivity selection results for the control and AD groups from correlation with thresholding: (A) control group based on original blood oxygen level

dependent (BOLD) signals; (B) control group based on low-rank matrix; (C) Alzheimer’s disease (AD) group based on original BOLD signals; (D) AD group based on

low-rank matrix.

FIGURE 3 | Connectivity selection results for control and Alzheimer’s disease (AD) group from sparse covariance estimation method: (A) control group based on

original blood oxygen level dependent (BOLD) signals; (B) control group based on low-rank matrix; (C) AD group based on original BOLD signals; (D) AD group based

on low-rank matrix.

of sparse covariance matrices for both cases based on original
BOLD signals and low-rank matrices. Therefore, we declare
that this method supplies us with a novel and efficient way
for constructing functional connectivity matrices. Through
controlling the parameter false positive rate α in this method,
we can achieve the desired sparsity for our estimation of sparse
covariance matrices.

Furthermore, as can be seen in Figure 3, the patterns of
connectivity matrices based on both the original BOLD signals
and low-rank matrices for both groups are still quite similar,
which indicates that L+S decompositionmethod can identify the
essential common features while still retaining most of features
for concentration inequality-based estimation method.

5.3. Comparison and Discussion
From the previous outputs and analyses, we have seen that
for each single subject and for each method we employ for
construction, we already derive connectivity results based on
both original BOLD signals and low-rank matrices. Subsequently
we conduct two sample T statistical test for each single ROI
connection, in order to reveal and identify the underlying
group differences between the control group and AD group.
In our study, we have 6,670 total connections [(116 × (116 −
1)/2)]. Two sample T statistical test is implemented to each
single connection cp,q of pth ROI and qth ROI. Then the
p-value matrix with 116 × 116 dimension for each single
method we use is derived based on both original BOLD

signals and low-rank matrices. The p-value matrices supply
us the significant connection locations for differentiating the
control group and AD group, which can intensely contribute
to uncovering underlying neurological processes associated with
AD for clinical use. Once we get the p-value matrix, we need
a reasonable significant level α. The adjusted p-values are
normally used in multiple comparisons (Wright, 1992). But in
our study, we do not employ adjusted p-values. The reason
is that the overlap rates for significant connection locations
based on original BOLD signals and low-rank matrices start
getting stable from threshold value 0.04 onwards, which we will
illustrate in more detail later. Hence, we choose 0.05 as the
significant level.

After getting the p-value matrices, we first focus on the
quantities of significant ROI connections out of 6,670 total

connections. That is to say, we explore how many connections
can be considered significant in terms of distinguishing the
differences between the normal group and AD group. We
define and calculate the percentage of significant connections
and compare the results based on both original BOLD
signals and low-rank matrices. Under significant level 0.05,
we define the percentage of significant connections of p-value
matrix as the number of elements smaller than 0.05 divided
by 6,670. Then we have the following comparison results
based on both original BOLD signals and low-rank matrices
for all the methods we employed in our study, as shown
in Table 1.
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TABLE 1 | Percentage comparisons of significant connections.

Methods Original BOLD signals Low rank matrix

Correlation 6.3868 6.3718

Sparse correlation 5.7121 5.9970

Partial correlation 3.2684 4.5577

Sparse partial correlation 3.6732 4.7826

Glasso precision 4.6927 4.9775

Glasso partial correlation 4.7077 4.7077

Sparse covariance estimation 5.8321 5.9220

From Table 1, we can see that except the correlation method
and Glasso partial correlation method, all the other methods
for construction based on low-rank matrices have higher
percentage of significant connections than based on the original
BOLD signals. This suggests that the former behaves better
than based on the original BOLD signals, in the sense that
it can reveal and identify more significant ROI connections
between the control group and AD group. Therefore, we verify
performing L + S matrix decomposition can help us achieve
more differentiable results for functional brain connectivity.
Furthermore, we can also see that the recently proposed
concentration inequality-based method performs better overall
compared with other methods.

Subsequently, we demonstrate the first 10 most significant
pairs of ROIs with first ten smallest p-value for both
sparse correlation method and concentration inequality-based
estimation, both based on low-rank matrices, as shown in
Tables 2, 3, which give us the most important ROI pairs
for distinguishing normal subject and AD subject we should
pay more attention to in clinical use. We can also see that
the connection between left hippocampus region and left
cerebellum 7 region is the most significant ROI connection
for differentiating the normal group and AD group for AD,
with p-value smaller than 0.0005. Researchers have shown that
the cerebellum has a strong role in higher cognitive functions
which include memory processes, and possibly serves long-
term memory encoding and information storage (Filippini et al.,
2009). It has been also demonstrated that AD patients showed
abnormal hippocampal connectivity during resting state (Wang
et al., 2006). Other research has illustrated that the connectivity
between hippocampus and cerebellum area is significantly
different for the control group and AD group (Allen et al.,
2007). Therefore, our finding here is consistent with existing
literatures’ findings.

We then explore whether performing L + S matrix
decomposition when studying functional brain connectivity
can keep some level of consistency compared with when
using original data matrices. In order to see qualitatively the
distribution comparison of those significant connection locations
based on original BOLD signals and low-rank matrices, we draw
significant connection location graphs for sparse correlation
method and sparse covariance estimation method, which are
shown in Figure 4. The dark blue dots represent the significant

connection locations, or the locations for the p < 0.05 in
the p-value matrices. As shown in Figure 4, the significant
connection locations detected have visually similar distribution,
which indicates decent overlap, for both based on original BOLD
signals and low-rank matrices, for the sparse correlation method
and also for the sparse covariance estimation method.

Furthermore, in order to go a step further to quantitatively
check significant connection location distribution to see the
overlap status for both original BOLD signals and low-rank
matrices, we define and calculate the overlap rate. We denote
poriginal as the p-value matrix based on original BOLD signals,
and plowrank as the p-value matrix based on low-rank matrices.
Here, we only focus on the upper triangle of the symmetric p-

value matrices. For the counterpart elements p
original

(i,j)
and plowrank

(i,j)
,

where i < j, we denote n1 as the number of elements of upper

triangle which satisfy 0.05 > p
original

(i,j)
> plowrank

(i,j)
, n2 as the number

of elements of upper triangle which satisfy p
original

(i,j)
< plowrank

(i,j)
<

0.05, and n
original
non−zero the number of non-zero of the upper triangle

of p-value matrix based on original data. Then we define overlap
rate as

(n1 + n2)/n
original
non−zero.

The results for overlap rate based on different methods we
utilize in our study are shown in Table 4. From Table 4, we
can see that the overlap rates for correlation method, sparse
correlation method, and sparse covariance estimation method
are relatively large enough, while the other methods are not.
Furthermore, the concentration inequality-based estimation has
slightly higher overlap rate than sparse correlation method.
These findings indicate that building brain connectivity based on
the low-rank matrices when using the correlation method, the
sparse correlation method, and the sparse covariance estimation
method can achieve decent level of consistency, in the sense of
the overlap status compared with the outputs based on original
BOLD signals. Furthermore, the concentration inequality-based
estimation has better consistency result than sparse correlation.
Hence, we verify that performing L + S matrix decomposition
when we study functional brain connectivity can keep decent
level of consistency when using original BOLD signals.

Furthermore, we also calculate the overlap rates under
different threshold values for the correlation method, the
sparse correlation method, and the sparse covariance estimation
method. We draw a line chart for overlap rate to better
demonstrate the results, as shown in Figure 5. We can see that
the overlap rates start getting more stable from threshold value
0.04 onwards.

In order to verify if performing L + S matrix decomposition
can achieve more stable results for constructing functional
connectivity matrices, we implement bootstrapping for 50 times,
and each time we sample 33 subjects out of 33 subjects in the
control group and 24 subjects out of 24 subjects in the AD group,
both with replacement. For each resampling, we conduct two
sample T statistical tests to derive the p-value matrices based on
both original BOLD signals and low-rank matrices. We apply
this process to all the methods we employ for construction. As
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TABLE 2 | The first 10 most significant pairs for sparse correlation based on low-rank matrices.

Pair Region 1 Classification Region 2 Classification p-value

1 L.HIP Limbic lobe L.CER7 Cerebellum 0.00010

2 L.CER45 Cerebellum VER7 Vermis 0.00045

3 L.MFG Frontal L.IFGtriang Frontal 0.00049

4 R.SFGdor Frontal L.IFGtriang Frontal 0.00062

5 R.ANG Parietal VER8 Vermis 0.00096

6 R.INS Insula R.SMG Parietal 0.00101

7 R.ORBsupmed Frontal L.ITG Temporal 0.00104

8 L.SMA Frontal R.CUN Occipital 0.00110

9 L.IFGoperc Frontal R.IFGtriang Frontal 0.00113

10 L.SFGdor Frontal VER9 Vermis 0.00123

TABLE 3 | The first 10 most significant pairs for concentration inequality-based estimation method based on low-rank matrices.

Pair Region 1 Classification Region 2 Classification p-value

1 L.HIP Limbic lobe L.CER7 Cerebellum 0.00015

2 L.MFG Frontal L.IFGtriang Frontal 0.00020

3 R.REC Frontal R.SOG Occipital 0.00028

4 L.SMA Frontal R.CUN Occipital 0.00033

5 L.CAU Corpus striatum L.TPOsup Limbic 0.00062

6 R.SFGdor Frontal L.IFGtriang Frontal 0.00085

7 L.ITG Temporal VER6 Vermis 0.00101

8 R.ORBsupmed Frontal R.ITG Temporal 0.00121

9 L.OLF Frontal L.CER6 Cerebellum 0.00140

10 R.ANG Parietal VER8 Vermis 0.00163

FIGURE 4 | Significant connection location detecting for sparse correlation and sparse covariance estimation method: (A) sparse correlation based on original blood

oxygen level dependent (BOLD) signals; (B) sparse correlation based on low-rank matrices; (C) sparse covariance estimation based on original BOLD signals; (D)

sparse covariance estimation based on low-rank matrices.

we stated above, for each p-value matrix we have a percentage
of significant connections. Then for 50 times bootstrapping,
we have 50 percentages of significant connections. Thus, we
calculate the variance for percentages of significant connections,
and the results are demonstrated in Table 5. As seen in Table 5,
the variances of percentages of significant connections based on
low-rank matrices are all smaller than those based on original
BOLD signals for all the methods we employ for construction
in our study. This result indicates that performing L + S matrix
decomposition can achievemore stable results when constructing
functional connectivity matrices.

6. CONCLUSION AND DISCUSSION

In this paper, we propose a pipeline architecture that enables
us to provide robust and stable functional brain connectivity,
and increase the detectability of group differences. In particular,
an L + S matrix decomposition technique is adapted to
decompose the ADNI data, where the low-rank matrix L
recovers the essential common features from ROIs, and the
sparse matrix S catches the sparse individual variability and
potential outliers. We apply our construction methods based
on low-rank matrices from decomposition and compare the
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results with those based on original BOLD signals. We
discover that the methods for building connectivity matrices
based on low-rank matrices behave better than based on
original BOLD signals, in the sense that the methods we
employ for constructing connectivity matrices based on low-
rank matrices can reveal and identify more significant ROI
connections for group differences. Hence, this suggests that when
we study group difference for functional brain connectivity,
performing L + S matrix decomposition can achieve more
differentiable results, which can contribute to uncovering

TABLE 4 | Overlap rate (%).

Methods Overlap rate

Correlation 77.93

Sparse correlation 58.53

Partial correlation 4.13

Sparse partial correlation 5.31

Glasso precision 6.39

Glasso partial correlation 5.41

Sparse covariance estimation 59.90

underlying neurological processes associated with the disease
for clinical use. We also find that the recently proposed
concentration inequality-based method performs better overall
compared with correlation, partial correlation, and Graphical
Lasso method for connectivity construction. We verify that this
method supplies us a novel and efficient way to explore functional
brain connectivity. The pipeline architecture that we propose can
be generalized to other datasets potentially to achieve robust and
stable results.

TABLE 5 | Variance comparisons of percentages of significant connections for 50

times bootstrapping (unit: ×10−4).

Methods Original BOLD signals Low-rank matrix

Correlation 5.6443 4.7270

Sparse correlation 5.6554 5.0379

Partial correlation 3.6149 3.4020

Sparse partial correlation 4.4523 3.6015

Glasso precision 4.0707 3.8987

Glasso partial correlation 3.0966 3.0435

Sparse covariance estimation 5.1630 4.0835

FIGURE 5 | Overlap rate for different threshold values.
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Furthermore, we obtain the first ten most significant
connections for differentiating group differences for AD.
Among them, the left hippocampus region and the left
cerebellum seven region is the most significant one, with p-
value smaller than 0.0005, which is consistent with existing
literatures’ findings. Moreover, through bootstrapping, we
verify that performing L + S matrix decomposition can
achieve more stable results for constructing functional brain
connectivity matrices.
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